

Hohe Anlagendichte bei Quartieren Wie kann die Beeinflussung vieler kleiner Anlagen in der Bauleitplanung berücksichtigt werden?

Gliederung

- + Ausgangssituation
- + Rechtliche Rahmenbedingungen
- + Herangehensweise
- + Fazit

Ausgangssituation:

- Baugebiet "Lehmhorstweg" im Norden von Celle
- + vorwiegend Einfamilienhäuser
- + **124 Wohneinheiten** auf rund 12,9 ha
- + **Verbot von Feuerungsstätten** in der Bauleitplanung
- + Prüfung von oberflächennaher Geothermie als Alternative
- thermische Leitfähigkeit des Untergrundes im Mittel2,1 W/(m*K)

Rechtliche Rahmenbedingungen:

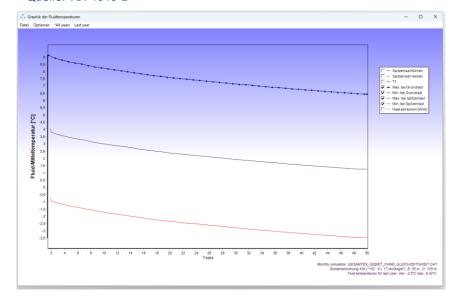

- + Die Errichtung von Erdwärmesonden ist bei der **Unteren Wasserbehörde** anzuzeigen bzw. zu beantragen.
- + Beteiligung des Landesamt für Bergbau, Energie und Geologie
- + Dabei erfolgt die Bemessung kleiner Anlagen (Einfamilienhäuser) nach Tabellenwerk
- + **Größere Anlagen** (ab 30 KW) erfordern nach VDI eine **Simulation über 50 Jahre**

Tabelle B8. Erdwärmesondenlänge und -anzahl für Kleinstanlagen

Wärmepumpen- heizleistung in kW	Anzahl EWS	m pro EWS	Anzahl EWS	m pro EWS
3			1	75
4	2	50	1	100
5	2	63		
6	2	75		
7	2	88		
8	2	100		

Quelle: VDI 4640-2

Quelle: Earth Energy Designer 4.20

Was sagt die VDI 4640 konkret?

+ Definition von Einzelanlagen

- Heizleistung maximal 30 kW
- vorgesehene Sondentiefen von 50 m bis 200 m
- maximal fünf, annähernd gleich lange Erdwärmesonden
- Es ist **keine thermische Wechselwirkung** mit anderen in der **unmittelbaren Nachbarschaft** befindlichen Sondenanlagen zu erwarten.
- mindestens 6 m Sondenabstand und keine deutliche Abweichung von einer Linienanordnung

+ Kleinstanlagen bis 8 kW

- Sondentiefe 50 bis 100 m
- können nach Tabelle bemessen werden

Rechtliche Rahmenbedingungen:

- + Wie sind nun mehrere benachbarte kleine Anlagen einzustufen und zu betrachten?
 - Jede als Einzelanlage?
 - Alle gemeinsam als Sondenfeld?
 - **Ab wann ist es ein Feld?** Ab der ersten Anlage oder wenn **in Summe 30 kW** überschritten werden?
- + Austausch mit der Unteren Wasserbehörde der Stadt Celle:
 - Ein Baugebiet mit mehreren einzelnen Erdwärmesonden ist aus genehmigungsrechtlicher Sicht wie ein großes, zusammenhängendes Erdwärmesondenfeld zu betrachten. Es muss daher ab einer kombinierten Wärmeleistung von 30 kW fachtechnisch bemessen werden.
 - Das wäre ab ca. 6 Einfamilienhäusern der Fall

Annahmen

- + Für die Betrachtung des gesamten Baugebietes wurden Annahmen zur Bebauung getroffen:
- + Haustypen:
 - kleines Einfamilienhaus mit ca. 120 m² Wohnfläche,
 - großes Einfamilienhaus mit ca. 180 m² Wohnfläche
 - **Doppelhaus** mit ca. 210 m² Wohnfläche betrachtet.
 - der KfW -Standard wird auf KfW 40 festgesetzt
- + Daraus ergeben sich die folgenden folgende Energiebedarfe und Wärmeleistungen

Haustyp	Beheizte Wohnfläche [m²]	Energiebedarf [kWh/a]	Wärmeleistung [kW]
Kleines EFH	120	8.500	4,7
Großes EFH	180	11.000	6,1
Doppelhaus	210	12.300	6,8

Annahmen

- + Weiter wird angenommen, dass die 124 geplanten Wohneinheiten jeweils
 - zu einem Drittel als kleines Einfamilienhaus,
 - zu einem Drittel als großes Einfamilienhaus und
 - zu einem Drittel Doppelhaus (mit zwei Wohneinheiten) ausgeführt werden.
- + Daraus ergeben sich
 - 41 kleine Einfamilienhäuser
 - 41 große Einfamilienhäuser
 - 21 Doppelhäuser mit je 2 Wohneinheiten

Herangehensweise

- Die Bemessung erfolgte für
 - 124 Einzelanlagen nach "VDI-Tabelle"
 - 124 Wohneinheiten als zusammenhängendes Erdsondenfeld mit dem Earth Energy Designer
 - 124 Wohneinheiten im "kalten Nahwärmenetz"mit dem Earth Energy Designer
- + Dabei wurden folgen Annahmen getroffen:
 - Gleichmäßige Verteilung der Erdsonden über das Baugebiet, mittlerer Abstand ca. 35 m
 - Betrachtung der Wohneinheiten als Feld durch Aufsummierung der Einzelleistungen
 - Das kalte Nahwärmenetz berücksichtigt einen Gleichzeitigkeitsfaktor von 80%

Betrachtung der Einzelanlagen getrennt

Haustyp	Anzahl	Bohrmeter nach VDI [m]	Bohrmeter nach EED [m]	Gesamtbohr- meter nach VDI [m]	Gesamtbohr- meter nach EED [m]
Kleines EFH	41	2*63	1*68	5.166	2.788
Großes EFH	41	2*75	1*88	6.150	3.608
Doppel- haus	21	2*88	1*98	3.696	2.058
Gesamtes Baugebiet	-			15.012	8.454

Haustyp	Anzahl	Bohrmeter nach VDI [m]	Bohrmeter nach EED [m]	Gesamtbohr- meter nach VDI [m]	Gesamtbohr- meter nach EED [m]	Gesamtbohr- meter als Feld [m]	Gesamtbohr- meter kaltes Nahwärmenetz [m]
Kleines EFH	41	2*63	1*68	5.166	2.788		
Großes EFH	41	2*75	1*88	6.150	3.608		
Doppel- haus	21	2*88	1*98	3.696	2.058		
Gesamtes Baugebiet	-			15.012	8.454	10.710	9.486 (8.063)

Haustyp	Anzahl			Gesamtbohr- meter nach EED [m]	meter als	Gesamtbohr- meter kaltes Nahwärmenetz [m]
Gesamtes Baugebiet	-		15.012	8.454	10.710	9.486 (8.063)

- + Betrachtung als Kleinstanlagen nach VDI führt zu deutlich mehr Bohrmetern
- + liegt aber auf der sicheren Seite
- + Grund hierfür ist u.a. die große Spanne der thermischen Leitfähigkeit in den Tabellen der VDI: 1,5...2,5 W/(m*K)

Haustyp	Anzahl		Gesamtbohr- meter nach VDI [m]		meter als	Gesamtbohr- meter kaltes Nahwärmenetz [m]
Gesamtes Baugebiet	-		15.012	8.454	10.710	9.486 (8.063)

- + Betrachtung aller Erdsonden als Feld erfordert rund 25 % mehr Bohrmeter
- + Auch bei Einhaltung der Mindestabstände (Grenzabstände, Sonden untereinander) ist eine **Beeinflussung** gegeben

Haustyp	Anzahl		Gesamtbohr- meter nach VDI [m]		meter als	Gesamtbohr- meter kaltes Nahwärmenetz [m]
Gesamtes Baugebiet	-		15.012	8.454	10.710	9.486 (8.063)

- + Im **kalten Nahwärmenetz** reduzieren sich die erforderlichen Bohrmeter durch die Gleichzeitigkeit um rund 12 %
- + Wird die horizontale Anbindung als Erdkollektor berücksichtigt, können weitere 10 bis 20 % der Bohrmeter eingespart werden.

Fazit:

- + Einzelanlagen in Baugebieten beeinflussen sich
- + Je nach thermischer Leitfähigkeit des Untergrundes variiert die Sicherheit der Bemessung als Kleinstanlagen nach VDI 4640
- + Betrachtung aller Einzelanlagen als Feld schafft **Sicherheit und Einsparpotentiale**
- + Warum nicht gleich ein kaltes Nahwärmenetz?

Vielen Dank für Ihre Aufmerksamkeit!

Dipl.-Ing. (FH) Kim Schwettmann Ingenieurgesellschaft Heidt + Peters mbH kim.schwettmann@heidt-peters.de